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Abstract

This article reports our contribution to the meeting held in Siena in November 2010 in honour 
of Giancarlo Carli, who has worked extensively on animal and human models of pain and, in 
particular, on the cognitive dimensions of chronic pain. The paper deals with the brain changes 
related to acute and chronic pain in muscular and neuropathic pain patients. The long-term 
influence of perinatal pain on sensitization and pain processing is discussed as well as the in-
fluence of learning processes such as operant or classical conditioning. The review closes with 
implications for behavioural interventions. 
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It was a pleasure for us to join the meeting held in Siena in honour of Giancarlo Carli on the 
occasion of his retirement. In fact, we share with him a deep interest in pain and, more spe-
cifically, in the environmental and individual factors possibly influencing the experience of 
chronic pain (Carli et al., 2002; Huber et al., 2007, 2008, 2009; Carli, Huber et al., 2008; Carli, 
Suman et al., 2008; Gabriel et al., 2010). This paper reports our contribution to the congress.

Brain changes in chronic neuropathic and musculoskeletal pain

In persons with amputations it has been shown that the region of the somatosensory cor-
tex that formerly received input from the now amputated limb reorganizes and subsequently 
processes input from neighbouring regions (e.g. Elbert et al., 1994;  Yang et al., 1994; Flor et al., 
1995; Price et al., 2006). These changes are mirrored in motor cortex (Cohen et al., 1991; Kew 
et al., 1994; Karl et al., 2001; Lotze et al., 2001; Karl, Muhlnickel et al., 2004). Interestingly, reor-
ganizational changes were only found in amputees with phantom limb pain after amputation, 
but not in amputees without pain (Flor et al., 1995). This suggests that pain may contribute 
to the changes observed and that the persisting pain might also be a consequence of the 
plastic changes that occur. In several studies carried out on human upper-extremity amputee 
patients, displacement of the lip representation in the primary motor and somatosensory cor-
tex was positively correlated with the intensity of phantom limb pain, and was not present in 
pain-free amputee patients or healthy control subjects (e.g. Flor et al., 1995; Diers et al., 2010). 
In addition, in the patients with phantom limb pain, but not in the pain-free amputee patients, 
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imagined movement of the phantom hand was shown to activate the neighbouring face area 
(Lotze et al., 2001). This co-activation probably occurs due to the high overlap of the hand, 
arm, and mouth representations. 

Similar observations have been made in patients with complex regional pain syndrome 
(CRPS). In these patients, the representation of the affected hand tends to be smaller com-
pared with that of the unaffected hand and the individual digit representations had moved 
closer together (Juottonen et al., 2002; Maihöfner et al., 2003, 2006; Schwenkreis et al., 2003; 
Pleger et al., 2005). The extent of the pathological change in the cortical representations cor-
related with the intensity of pain or motor dysfunction (Maihöfner et al., 2004, 2007; Pleger 
et al., 2005), but was additionally related to a degradation of sensibility in the affected hand. 
It was, however, unrelated to a loss of motor function (Maihöfner et al., 2007). It is so far not 
known how an expansion of adjacent representations and a shrinking of adjacent representa-
tions as observed in phantom limb pain and CRPS, respectively, can both be associated with 
pain. It is also not known to what extent nociceptive and non-nociceptive neurons interact in 
this process and how inhibitory and excitatory mechanisms influence each other.

Not only decreased input related to deafferentation but also increased behaviourally rel-
evant input related to non-neuropathic pain leads to changes in the cortical map in chronic 
musculoskeletal pain syndromes such as chronic back pain (CBP) or fibromyalgia (FM) (Flor, 
Braun et al., 1997; Gracely et al., 2002; Giesecke et al., 2004; Tsao et al, 2008 Burgmer et al., 
2009). For example, Flor, Braun et al. (1997) reported a close association between the chro-
nicity of back pain and enhanced excitability and map expansion of the back representation 
in primary somatosensory cortex in patients with non-neuropathic back pain. The back rep-
resentation had expanded and shifted towards the leg representation the longer the pain had 
persisted. This was site-specific since the hand representation was unaffected. Similar changes 
were reported by Giesecke et al. (2004) using functional magnetic resonance imaging. Re-
cently, Tsao et al. (2008) observed a close interaction between changes in motor cortex and 
postural control in patients with CBP suggesting an intricate interaction between peripheral 
and central traces of plastic changes related to chronic pain. 

Greatly enhanced representations of painful stimulation were also found in patients with 
fibromyalgia. Gracely et al. (2002) reported that comparable levels of subjectively reported 
painful stimulation resulted in cerebral activation patterns that were similar in FM patients 
and healthy controls. However, similar stimulation intensities resulted in stronger activation 
in regions specific for pain processing in FM patients, supporting the hypothesis of augmented 
pain processing in FM patients. Cook et al. (2004) examined painful heat stimuli (47°C) to the 
non-dominant thenar in patients with FM and healthy controls and observed activations in 
primary and secondary somatosensory cortex, the anterior cingulate cortex, the supplemen-
tary motor area, and the insular cortex. Contrasts between both groups revealed significantly 
more activation for the FM group in the contralateral insular cortex. For perceptually equiva-
lent pain ratings FM patients failed to respond to pain provocation in the descending pain 
regulating system (the rostral anterior cingulate cortex) (Jensen et al., 2009). 

These changes were present in cortical activation maps as well as in areas involved in the 
affective and cognitive processing of pain (Burgmer et al., 2009). Catastrophizing was found to 
be significantly associated with increased activity in brain areas related to anticipation of pain 
(medial frontal cortex, cerebellum), attention to pain (dorsal anterior cingulate cortex, dorsola-
teral prefrontal cortex), emotional aspects of pain (claustrum, closely connected to amygdala), 
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and motor control when depressive symptomatology was controlled for (Gracely et al., 2004). 
Symptoms of depression and the presence of major depressive disorder were associated with 
the magnitude of pain-evoked neuronal activations in brain regions associated with affective 
pain processing (the amygdalae and contralateral anterior insula cf., Giesecke et al., 2005). 
Patients with major depressive disorder show hyperalgesia, but the hyperalgesia is more pro-
nounced in FM and a deficit in pain inhibition is specific to FM (de Souza et al., 2009; Normand 
et al., 2010). A recent study with 83 subjects showed that depressive symptoms, anxiety, and 
catastrophizing scores were correlated, but did not correlate with ratings of clinical pain or 
with sensitivity to pressure pain (Jensen et al., 2010). Brain activity during experimental pain 
was not modulated by depressive symptoms, anxiety, or catastrophizing (Jensen et al., 2010). 
The general and widespread nature of pain in FM suggests the involvement of central mecha-
nisms via spinal and/or supraspinal modulation of experimental peripheral input. The exact 
interplay of pain, anxiety, depression, and catastrophizing needs to be further investigated and 
can be different in different subgroups of patients (Flor & Turk, 2011).

In addition to changes in functional activation, structural and biochemical changes and 
changes in brain connectivity have also been reported for musculoskeletal pain syndromes 
(e.g. Kuchinad et al., 2007; Schmidt-Wilcke et al., 2007; Staud & Spaeth, 2008). They might, 
however, be a consequence rather than a cause of the pain (Seifert & Maihöfner, 2011).

Preterm sensitization

An especially interesting example of brain changes correlated to injury and stimulation related 
to pain are changes that occur as a consequence of painful stimulation early in life. Whereas 
formerly it was assumed that there is no pain perception in the neonate, more recent evidence 
shows not only that neonates perceive pain but that pain leads to long-lasting negative con-
sequences (Thewissen & Allegaert, 2011). The neonatal period is a particularly sensitive time 
window for experience-induced neuronal plasticity due to the ongoing maturation of the noci-
ceptive (Fitzgerald & Jennings, 1999) and the sensory systems (Berardi et al., 2000). In animal 
studies it has been shown that neonatal pain experiences can induce long-term hypoalgesia or 
hyperalgesia (Anand et al., 1999; Lidow, 2002). Similar findings have been obtained in humans. 
Twelve years after treatment in a neonatal intensive care unit both preterm and full-term chil-
dren showed greater perceptual sensitization to tonic heat and elevated heat pain thresholds 
compared to control children without neonatal intensive care unit experience (Hermann et al., 
2006). In response to tonic heat pain preterm children showed significantly higher activations 
in primary somatosensory cortex, anterior cingulate cortex, and insula compared to controls 
(Hohmeister et al., 2010). This suggests that repeated pain experience in neonates may induce 
activity-induced changes in the functioning of pain pathways that persist well beyond infancy. 

A changed pain perception has also been observed in school-aged children who suffered 
during the age of 6–24 months from moderate or severe burn injuries. Moderately burned 
children had significantly higher mechanical detection thresholds and significantly lower 
mechanical pain thresholds and significantly greater perceptual sensitization to repetitive 
mechanical stimuli compared to controls (Wollgarten-Hadamek et al., 2009). Severely burned 
children had elevated heat pain thresholds and significantly greater perceptual sensitization to 
thermal stimuli compared to controls (Wollgarten-Hadamek et al., 2009). This suggests that 
early traumatic and painful injuries can induce global, long-term alterations in sensory and 
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pain processing also on body sites not affected by the burn injury. It is possible that sensitized 
excitatory pain pathways result in a disturbed endogenous pain inhibitory mechanism and can 
be tested with stress-induced analgesia, a reduced nociceptive response after stress exposure, 
which is mediated by descending inhibitory opioid and non-opioid brain circuits (Akil et al, 
1976; Willer et al., 1981; Flor & Grüsser, 1999; Flor et al., 2002; Yilmaz et al., 2010). Moder-
ately burned children and controls showed intact stress-induced analgesia whereas severely 
burned children failed to show significant stress-related changes (Wollgarten-Hadamek et al., 
2011). In addition, in neonates brain regions involved in pain inhibition were underactivated 
whereas brain regions that reflect especially the affective component of pain were overac-
tivated (Hohmeister et al., 2010). A counter-irritation-induced analgesia with a cold pressor 
pain stimulus reduced heat pain intensity ratings in term-born children and preterm children 
with few painful interventions at birth, but not in preterm children with numerous painful 
procedures during the neonatal period (Goffaux et al., 2008). This suggests that pain and stress 
exposure in neonates and infants may be associated with an attenuated stress-induced activa-
tion of endogenous pain inhibitory mechanisms later in childhood and adolescence. 

Learning mechanisms in chronic pain and sensitization

In addition to sensitization (a non-associative learning process), associative learning such 
as operant or Pavlovian conditioning can influence the processing of pain on all levels—the 
verbal-subjective, the behavioural, and the physiological (Fordyce, 1976; Linton & Gotestam, 
1985; Flor & Turk, 2011). Fordyce (1976) proposed that positive as well as negative reinforce-
ment of pain behaviours (such as sighing or grimacing) and a lack of positive reinforcement 
of healthy behaviours (such as movement or smiling) can increase the expression of pain 
behaviours and over time lead to behaviourally induced chronic pain problems. Direct verbal 
reinforcement of pain has been identified as an important modulator of the pain response. 
When patients and healthy controls were reinforced for increasing or decreasing their verbal 
pain responses both patients and controls learned this task equally well; however, the patients 
showed a delay in the extinction of the verbal pain response.

When somatosensory evoked potentials to the pain stimuli were examined, the late event-
related responses (> 250 ms) were unaltered and showed mainly habituation. However, the 
early response (N150) was affected by the conditioning procedure and remained high in the 
chronic pain group that had been reinforced for higher pain ratings during extinction. This in-
dicates a direct effect of verbal reinforcement on the early cortical processing of nociceptive 
information (Flor et al., 2002). This lack of extinction in cortical processing implies that mala-
daptive learnt physiological responses may greatly contribute to pain chronicity. Chronic pain 
patients might also have learned to increase muscle tension in anticipation of painful stimuli 
to reduce pain. This would result in negative reinforcement (because a negative consequence, 
pain, is eliminated) and could lead to short-term pain reduction, but on the long term stimu-
late and sensitize nociceptors and thus increase pain. During painful stimuli on the lower arm 
or back, chronic back pain patients were instructed to increase their muscle tension or keep 
it low. During the tension increase condition, the CBP patients but not the healthy controls 
showed higher N150 and N150/P260 amplitudes (Knost et al., 1999). Thus, operantly condi-
tioned muscle tension could contribute to chronicity. 
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In a study in which pain was implicitly reinforced, a series of tonic painful heat stimuli 
were applied to the dominant hand. Patients had to adjust the temperature at the end of each 
trial to the subjective temperature felt at the beginning of each trial, which was objectively 
not changed. The temperature was increased or decreased in each subsequent trial, depend-
ing on the adjustment in the trial before. Thus the behaviour of the subjects was reinforced 
without their knowledge. It was shown that increased or decreased pain sensitivity could be 
implicitly learned (Hölzl et al., 2005). In another study sensitization could be modulated by 
implicit reinforcement (Becker et al., 2008). Thus, operant learning mechanisms based on in-
trinsic reinforcement may provide an explanation for the gradual development of sustained 
hypersensitivity during pain that is becoming chronic (Becker et al., 2008). Using this paradigm 
in patients with FM, one subgroup with and one without irritable bowel syndrome (IBS), it 
was shown that FM patients without IBS sensitized in the habituation learning condition. FM 
patients with IBS demonstrated neither learning of sensitization nor habituation. Thus, operant 
perceptual learning seems to be impaired in patients with FM (Becker et al., 2011). 

Another type of learning that is important for pain modulation is Pavlovian conditioning 
where originally neutral stimuli become associated with pain and can later by themselves en-
hance pain perception and induce chronicity. In a typical aversive Pavlovian differential delay 
conditioning procedure, aversive pictures were paired with painful electric stimulation, where-
as positive pictures were paired with the absence of shock (Schneider et al., 2004). Chronic 
back pain patients showed an enhanced muscular response of the left forearm (where the 
unconditioned stimulus was applied) to the reinforced conditioned stimulus already in the 
pre-conditioning phase indicative of more anticipatory anxiety towards the painful stimulus. 
During learning the painful muscle showed an increased response to the reinforced condi-
tioned stimulus and an increased response to the reinforced and unreinforced conditioned 
stimulus in the extinction phase. These data were complemented by brain changes that were 
indicative of an altered anticipatory brain response as evidenced by the contingent negative 
variation that develops between the conditioned and the unconditioned stimulus. 

Diesch and Flor (2007) showed that non-painful tactile stimulation can change the organi-
zation of the primary somatosensory cortex. Non-painful stimuli to the finger were used as 
conditioned stimuli and painful electrical stimuli to the back as unconditioned stimuli. This 
study in healthy controls showed that humans easily acquire a conditioned muscular response 
in this conditioning paradigm compared to an unconditioned control group where the stimuli 
were randomly distributed. The cortical representation of the conditioned finger increased 
and shifted in the direction of the back compared to the control finger. These data can be in-
terpreted as reflecting the development of a cortical network that associates more and more 
formerly neutral stimuli into a ‘pain network’ that then triggers pain perception and behaviour-
al pain responses. It should be noted that there is considerable overlap between the processing 
of pain and other negative emotions and that these networks interact (Legrain et al., 2011).

There is also indirect evidence of conditioning for pain-related words. Several studies found 
that painful words such as ‘burning’, ‘sticking’, and ‘pricking’ led to changed brain responses 
and hyper-reactivity in chronic pain patients compared to non-pain-related bodily sensations 
such as ‘sweating’ or ‘breathing’ or neutral words such as ‘walking’ or ‘standing’. The early com-
ponent (N100–N150) of the event-related potential was increased for the pain-related words 
in both chronic and subchronic pain patients (Flor et al., 1997; Knost et al., 1997) and showed 
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increased blood-oxygen-level dependence in the left orbitofrontal cortex and anterior insula 
in migraine patients (Eck et al., 2011). 

Another study showed that this effect can be induced in a learning process in healthy 
subjects. In a classical conditioning study pairing pseudo-words with painful electrical stimuli 
an increased N100 response, especially over the left hemisphere, was found after the condi-
tioning procedure (Montoya et al., 1996). Thus chronic pain can lead to the development of a 
somatosensory memory for pain with changed maps in the somatosensory cortex and chang-
es in other brain areas, as well as hyperalgesia in the absence of peripheral nociceptive stimuli. 
These processes lead to more attention to the formerly neutral stimuli because they increase 
their salience and attentional processes can further enhance the learning and brain changes 
(Rainville et al., 1997; Buchner et al., 1999;  Valet et al., 2004). Learning and attentional proc-
esses thus cause additional and widespread implicit memory traces and reinforce the existing 
pain memory via connections with affective brain areas. In addition to local changes a general 
cortical excitability was found in chronic pain (e.g. Larbig et al., 1996; Karl, Diers et al., 2004).

Behavioural interventions

The assumption that chronic pain is greatly influenced by learning and memory processes 
suggests that treatment should focus on the alteration of these memory traces. Behavioural 
and cognitive methods or their combination are especially well suited for this purpose because 
they can specifically alter the brain change that is prominent in a specific condition whereas 
pharmacological treatments act in a more unspecific manner. Patients who show high lev-
els of pain behaviours and are much incapacitated by their pain should profit from operant 
behavioural treatment. The goals of this treatment are: the decrease of pain behaviours in 
an effort to extinguish pain; the increase of activity levels and healthy behaviours related to 
work, leisure time, and the family; medication reduction and management; and the change of 
the behaviour of significant others (Fordyce, 1976). The overall goal is to reduce disability by 
reducing pain and increasing healthy behaviours. Medication is switched from a pain contin-
gent to a fixed time schedule, where medication is given at certain times of the day to avoid 
negative reinforcement learning. Similar principles are applied to the enhancement of activity, 
and the reduction of inactivity and invalidity. This approach has been found to be effective in 
patients with chronic back pain as well as other pain syndromes such as FM (Thieme et al., 
2003, 2006) and is especially effective in reducing pain behaviours. 

The cognitive-behavioural model of chronic pain emphasizes the role of cognitive, affective, 
and behavioural factors in the development and maintenance of chronic pain. The central ten-
et of this treatment is to reduce feelings of helplessness and uncontrollability, and to establish 
a sense of control over pain in patients. This is achieved by the modification of pain-eliciting 
and maintaining behaviours, cognitions, and emotions. The cognitive-behavioural approach 
teaches patients various techniques to effectively deal with episodes of pain. Pain-related 
cognitions are changed by cognitive restructuring and pain coping strategies, such as attention 
diversion and use of imagery or relaxation that increase self-efficacy. Several studies have ex-
amined the efficacy of cognitive-behavioural pain management, which must be considered as 
a very effective treatment of chronic pain (Hoffman et al., 2007). Whereas operant treatment 
reduces especially pain behaviours and also pain intensity, cognitive-behavioural therapy has a 
special effect on the affective and cognitive aspects of pain (Thieme et al., 2006). Since extinc-
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tion is more difficult than acquisition, principles of extinction training need to be considered 
(Flor, 2009).

Previous studies have used hypnosis to differentially modulate the sensory or affective 
component of pain and have shown differential changes of the primary somatosensory cortex 
or the anterior cingulate, respectively (Rainville, Carrier et al., 1999; Rainville, Hofbauer et al., 
1999). Several studies have shown that hypnosis also effectively influences pain in chronic 
conditions and that it produces sizeable pain reductions (Carli, Huber et al., 2008; Carli, Suman 
et al., 2008; Dufresne et al., 2010). For example, hypnosis improved pain intensity in multiple 
sclerosis as well as cognitive restructuring with the best effects for the combined treatment 
(Jensen et al., 2011). Hypnosis was shown to have effects on both cortical pain modulation 
(by attention) (Rainville, Carrier et al., 1999; Rainville, Hofbauer et al., 1999; Derbyshire et al., 
2009) and spinal pain modulation (Kiernan et al., 1995; Danziger et al., 1998).

Treatments that combine pharmacological interventions with behavioural and cognitive-
behavioural interventions might be even more effective. In anxiety disorders it has been shown 
that exposure with or without additional pharmacological intervention can alter brain proc-
esses related to stimuli that are relevant for the disorder. The partial NMDA receptor agonist 
D-cycloserine has been found to be effective in enhancing extinction of aversive memories and 
has been used as an effective adjunct to exposure treatment in several studies (Ressler et al., 
2004; Hofmann et al., 2006). D-cycloserine has also been shown to reduce neuropathic pain 
by itself in an animal model of neuropathic pain (Millecamps et al., 2007). In addition, can-
nabinoids have been identified as important modulators of extinction (Marsicano et al., 2002; 
Wotjak, 2005) and might be interesting compounds to support extinction training. Since pain 
seems to generally increase excitability, substances that decrease excitation, such as gabap-
entin or pregabalin, would also seem indicated as enhancers of extinction. Since extinction is 
context-specific, training should include as many varied behaviours and environments as pos-
sible. The use of stress and pain episodes to train relapse prevention are important parts of this 
training. In addition, cognitive and emotional aspects of pain need to be targeted (Flor, 2009). 

Conclusion

Recent scientific evidence has shown that chronic pain leads to changes in many brain regions. 
In particular the neonatal period is a sensitive time window for experience-induced neuronal 
plasticity due to the ongoing maturation of the pain system. As classical and operant condi-
tioning procedures are involved in the development of chronic pain, cognitive-behavioural 
treatments are very effective. 
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